The Conserved C-Terminus of the PcrA/UvrD Helicase Interacts Directly with RNA Polymerase
نویسندگان
چکیده
UvrD-like helicases play diverse roles in DNA replication, repair and recombination pathways. An emerging body of evidence suggests that their different cellular functions are directed by interactions with partner proteins that target unwinding activity to appropriate substrates. Recent studies in E. coli have shown that UvrD can act as an accessory replicative helicase that resolves conflicts between the replisome and transcription complexes, but the mechanism is not understood. Here we show that the UvrD homologue PcrA interacts physically with B. subtilis RNA polymerase, and that an equivalent interaction is conserved in E. coli where UvrD, but not the closely related helicase Rep, also interacts with RNA polymerase. The PcrA-RNAP interaction is direct and independent of nucleic acids or additional mediator proteins. A disordered but highly conserved C-terminal region of PcrA, which distinguishes PcrA/UvrD from otherwise related enzymes such as Rep, is both necessary and sufficient for interaction with RNA polymerase.
منابع مشابه
The structure and function of an RNA polymerase interaction domain in the PcrA/UvrD helicase
The PcrA/UvrD helicase functions in multiple pathways that promote bacterial genome stability including the suppression of conflicts between replication and transcription and facilitating the repair of transcribed DNA. The reported ability of PcrA/UvrD to bind and backtrack RNA polymerase (1,2) might be relevant to these functions, but the structural basis for this activity is poorly understood...
متن کاملThe unstructured C-terminal extension of UvrD interacts with UvrB, but is dispensable for nucleotide excision repair
During nucleotide excision repair (NER) in bacteria the UvrC nuclease and the short oligonucleotide that contains the DNA lesion are removed from the post-incision complex by UvrD, a superfamily 1A helicase. Helicases are frequently regulated by interactions with partner proteins, and immunoprecipitation experiments have previously indicated that UvrD interacts with UvrB, a component of the pos...
متن کاملA Conserved Helicase Processivity Factor Is Needed for Conjugation and Replication of an Integrative and Conjugative Element
Integrative and conjugative elements (ICEs) are agents of horizontal gene transfer and have major roles in evolution and acquisition of new traits, including antibiotic resistances. ICEs are found integrated in a host chromosome and can excise and transfer to recipient bacteria via conjugation. Conjugation involves nicking of the ICE origin of transfer (oriT) by the ICE-encoded relaxase and tra...
متن کاملUvrD controls the access of recombination proteins to blocked replication forks.
Blocked replication forks often need to be processed by recombination proteins prior to replication restart. In Escherichia coli, the UvrD repair helicase was recently shown to act at inactivated replication forks, where it counteracts a deleterious action of RecA. Using two mutants affected for different subunits of the polymerase III holoenzyme (Pol IIIh), we show here that the anti-RecA acti...
متن کاملCharacterisation of Bacillus stearothermophilus PcrA helicase: evidence against an active rolling mechanism.
PcrA from Bacillus stearothermophilus is a DNA helicase for which, despite the availability of a crystal structure, there is very little biochemical information. We show that the enzyme has a broad nucleotide specificity, even being able to hydrolyse ethenonucleotides, and is able to couple the hydrolysis to unwinding of DNA substrates. In common with the Escherichia coli helicases Rep and UvrD...
متن کامل